Итак, если выиграет первый, он получит 64 червонца. Если выиграет второй, то первый получит лишь 32. Поэтому, если оба согласны не играть предстоящей партии, то первый вправе сказать: 32 червонца я получу во всяком случае, даже если я проиграю предстоящую партию, которую мы согласились признать последней. Стало быть, 32 червонца мои. Что касается остальных 32 — может быть, их выиграю я, может быть, и вы; поэтому разделим эту сомнительную сумму пополам. Итак, если игроки разойдутся, не сыграв последней партии, то первому надо дать 48 червонцев, или же s, всей суммы, второму 16 червонцев, или, из чего видно, что шансы первого из них на выигрыш втрое больше, чем второго (а не вдвое, как можно было бы подумать при поверхностном рассуждении).
Несколько позднее Паскаля и Ферма к теории вероятностей обратился Хейнгенс Христиан Гюйгенс (1629–1695). До него дошли сведения об их успехах в новой области математики. Гюйгенс пишет работу «О расчетах в азартной игре». Она впервые вышла в виде приложения к «Математическим этюдам» его учителя Схоотена в 1657 году. До начала восемнадцатого века «Этюды…» оставались единственным руководством по теории вероятностей и оказали большое влияние на многих математиков.
В письме Схоотену Гюйгенс заметил: «Я полагаю, что при внимательном изучении предмета читатель заметит, что имеет дело не только с игрой, но что здесь закладываются основы очень интересной и глубокой теории». Подобное высказывание говорит о том, что Гюйгенс глубоко понимал существо рассматриваемого предмета.
Именно Гюйгенс ввел понятие математического ожидания и приложил его к решению задачи о разделении ставки при разном числе игроков и разном количестве недостающих партий и к задачам, связанным с бросанием игральных костей. Математическое ожидание стало первым основным теоретико-вероятностным понятием.
В XVII веке появляются первые работы по статистике. Они посвящены, главным образом, подсчету распределения рождений мальчиков и девочек, смертности людей различных возрастов, необходимого количества людей разных профессий, величины налогов, народного богатства, доходов. При этом применялись методы, связанные с теорией вероятностей. Подобные работы способствовали ее развитию.
Галлей при составлении таблицы смертности в 1694 году осреднял данные наблюдений по возрастным группам. По его мнению, имеющиеся отклонения «видимо, вызваны случаем», что данные не имели бы резких отклонений при «намного большем» числе лет наблюдений.
Теория вероятностей имеет огромное применение в самых различных областях. Посредством нее астрономы, например, определяют вероятные ошибки наблюдений, а артиллеристы вычисляют вероятное количество снарядов, могущих упасть в определенном районе, а страховые общества — размер премий и процентов, уплачиваемых при страховании жизни и имущества.
А во второй половине девятнадцатого столетия зародилась так называемая «статистическая физика», представляющая собой область физики, специально изучающей огромные совокупности атомов и молекул, составляющие любое вещество, с точки зрения вероятностей.
ДИФФЕРЕНЦИАЛЬНОЕ И ИНТЕГРАЛЬНОЕ СЧИСЛЕНИЕ
Задолго до Ньютона и Лейбница многие философы и математики занимались вопросом о бесконечно малых, но ограничились лишь самыми элементарными выводами. Еще древние греки употребляли в геометрических исследованиях способ пределов, посредством которого вычисляли, например, площадь круга. Особенное развитие дал этому способу величайший математик древности Архимед, открывший с его помощью множество замечательных теорем. Кеплер и в этом отношении ближе всех подошел к открытию Ньютона. По случаю чисто житейского спора между покупщиком и продавцом из-за нескольких кружек вина Кеплер занялся геометрическим определением емкости бочкообразных тел. В этих исследованиях видно уже весьма отчетливое представление о бесконечно малых. Так, Кеплер рассматривал площадь круга как сумму бесчисленных весьма малых треугольников или, точнее, как предел такой суммы. Позднее тем же вопросом занялся итальянский математик Кавальери. В особенности много сделали в этой области французские математики XVII века Роберваль, Ферма и Паскаль. Но только Ньютон и несколько позднее Лейбниц создали настоящий метод, давший огромный толчок всем отраслям математических наук.
По замечанию Огюста Конта, дифференциальное исчисление, или анализ бесконечно малых величин, есть мост, перекинутый между конечным и бесконечным, между, человеком и природой: глубокое познание законов природы невозможно при помощи одного грубого анализа конечных величин, потому что в природе на каждом шагу — бесконечное, непрерывное, изменяющееся.