ФАНТАСТИКА

ДЕТЕКТИВЫ И БОЕВИКИ

ПРОЗА

ЛЮБОВНЫЕ РОМАНЫ

ПРИКЛЮЧЕНИЯ

ДЕТСКИЕ КНИГИ

ПОЭЗИЯ, ДРАМАТУРГИЯ

НАУКА, ОБРАЗОВАНИЕ

ДОКУМЕНТАЛЬНОЕ

СПРАВОЧНИКИ

ЮМОР

ДОМ, СЕМЬЯ

РЕЛИГИЯ

ДЕЛОВАЯ ЛИТЕРАТУРА

Последние отзывы

Невеста по завещанию

Очень понравилось, адекватные герои читается легко приятный юмор и диалоги героев без приторности >>>>>

Все по-честному

Отличная книга! Стиль написания лёгкий, необычный, юморной. История понравилась, но, соглашусь, что героиня слишком... >>>>>

Остров ведьм

Не супер, на один раз, 4 >>>>>

Побудь со мной

Так себе. Было увлекательно читать пока герой восстанавливался, потом, когда подключились чувства, самокопание,... >>>>>

Последний разбойник

Не самый лучший роман >>>>>




  168  

Один из ведущих британских политиков заявил недавно, что пользоваться популярностью не входит в его обязанности! Это не так, ибо популярный министр — человек, на которого можно положиться. Пользуясь заслуженным доверием электората, он способствует процессу демократизации. Ни один министр не способен правдиво изложить идею социального равенства, если априорно полагает, будто наделен какими-то качествами, возвышающими его над обществом. Классовая структура всегда навязывается сверху, а не снизу. Поэтому в интересах гармонии и единства тех, кто слишком возомнил о себе, необходимо сбросить с сооруженного ими пьедестала. Иисус Христос ни в коей мере не чувствовал себя униженным, когда омывал ноги апостолам. Наоборот, он, как истинный государь Грааля, вознесся над царством равенства и монаршего служения. Это и есть извечная заповедь Сангреаля, выраженная в учении о Граале предельно ясно. Чтобы зарубцевалась рана царя ловцов и вновь зацвела опустошенная земля, стоит только спросить: «Кому служит Грааль?»

ПРИЛОЖЕНИЕ I

Три стола Грааля

Предание гласит о том, что «Грааль покоился на трех столах: круглом, квадратном и прямоугольном. Все они имели один и тот Же периметр, а число три составляло два к одному». Такое туманное описание столов способствовало укоренению мысленного представления о Граале как о предмете подобном кубку или блюду. По этой причине данные предметы мебели уподоблялись столам короля Артура, замка Грааля и Тайной вечери. В действительности же указанное выше соотношение «два к одному» характеризует знаменитую золотую пропорцию и практически не имеет отношения к столам в утилитарном смысле.

Золотая пропорция, представляющая собой гармоническое деление отрезка, использовалась древнегреческим математиком Евклидом в I столетии до Р.Х. На самом же деле применение на практике этого метода началось задолго до Евклида и восходит ко времени Платона. Золотое сечение использовалось в античное время в пропорциях архитектурных сооружений, а в наши дни широко применяется в изобразительном искусстве, при конструировании и дизайне. Приблизительно это отношение равно 5/3, точнее 8/5, 13/8 и т.д.

В основу метода положено разделение линий на отрезки, пропорциональные квадратным корням, которое не требует линейных измерений и осуществляется лишь посредством циркуля. За основу берется квадрат со стороной, равной √1. Раствором циркуля, равным длине его диагонали, отсекаем на продолжении основания отрезок, соответствующий √2. Восстанавливаем из данной точки перпендикуляр, равный √1, и раствором циркуля, равным гипотенузе получившегося треугольника, отмечаем на основании отрезок, соответствующий √3. Продолжая построение далее, получим отрезок, равный √5, являющийся гипотенузой прямоугольного треугольника с соотношением сторон 2:1, представляющим собой вышеозначенную пропорцию Грааля.

Хотя сами отрезки несоизмеримы со стороной единичного квадрата, площади образованных ими квадратов выражаются рациональными числами. В свое время древнегреческие мыслители заключили, что арифметика не может служить основанием для геометрии. Геометрические величины, решили они, имеют более общую природу, чем числа и их отношения. По этой причине в основу всех расчетов была положена геометрия — соотношения длин заменялись соотношениями площадей. Всем известная теорема Пифагора понятна лишь применительно к площадям. Например, площадь квадрата со стороной √1 составляет ровно одну пятую площади квадрата, построенного на длинной стороне прямоугольника, равной √5. Таким образом, соотношение между подкоренными значениями длин сторон, показанных на рисунке прямоугольников, можно использовать для выражения площадей образуемых ими квадратов.

Диагональ прямоугольника с соотношением сторон 1:2 (т.н. сдвоенного квадрата, равная √5), непосредственно связана с золотой пропорцией, широко применявшейся при строительстве храмов и святилищ. Золотая пропорция показывает, что точка делит отрезок так, что большая часть относится к меньшей так же, как весь отрезок к большей части. Искомое отношение отрезков выражается числом Ф = (√5 + 1)/2 = 1,618034… Такое обозначение принято в честь древнегреческого скульптора Фидия, жившего в V веке до Р.Х. и руководившего постройкой храма Парфенон в Афинах. В пропорциях этого храма многократно присутствует число Ф.

  168