Главное преимущество цветной голографии кроется в том, что ее можно копировать машинным способом, используя определенную технику тиснения. Красочную копию экспонируют на особый светочувствительный слой – фоторезистный лак. Этот материал отличается высокой разрешающей способностью. (Его применяют, например, в микролитографии, чтобы нанести на плату те или иные элементы микросхемы.)
В нашем случае, при массовом тиражировании голограмм, вначале берут цифровую камеру и фотографируют объект со всех сторон. Компьютер соединяет отдельные снимки. И вот трехмерное изображение готово. Затем в лаборатории лазер «гравирует» эту картинку на фоточувствительной пластине. Получается тонкий поверхностный рельеф. С помощью электролиза «гравюру» наносят на никелевую матрицу.
Матрица нужна для массового тиражирования голограмм. Их оттиски – по методу горячего тиснения – получают на металлической фольге. Теперь, как только луч света падает на голограмму, она начинает играть всеми цветами радуги. Среди этого многоцветья предстает перед зрителем изображенный предмет. Подобные голограммы дешевы. Изготовить их можно в любом количестве, лишь бы было оборудование.
Такие голограммы используют во всем мире в качестве наклеек на товарные упаковки и документы. Они служат прекрасной защитой от подделок: скопировать голографическую запись очень трудно.
Можно создавать голограммы, на которых изображены предметы, не существующие в реальности. Достаточно компьютеру задать форму объекта и длину волны падающего на него света. По этим данным компьютер рисует картину интерференции отраженных лучей. Пропустив световой пучок сквозь искусственную голограмму, можно увидеть объемное изображение придуманного предмета.
По мнению Сергея Транковского: «Настоящим подарком голография стала для инженеров: теперь они могут исследовать и регистрировать процессы и явления, описанные порой только теоретически.
Например, лопатки турбореактивного авиационного двигателя во время работы нагреваются до сотен градусов и деформируются. Каким образом распределяется при этом напряжение в детали, где находится ее слабое место, угрожающее разрушением, – определить это прежде было либо крайне сложно, либо вообще невозможно. С помощью голографических методов такие исследования проводят без особого труда.
Освещенная лазерным светом, голограмма восстанавливает световую волну, отраженную деталью при съемке, и изображение появляется там, где раньше находилась деталь. Если же деталь осталась на месте, возникают сразу две волны: одна идет непосредственно от объекта, другая – от голограммы. Эти волны когерентны и могут интерферировать. В том случае, если объект во время наблюдения подвергся деформации, его изображение покрывается полосами, по которым судят о характере изменений.
Методы топографического контроля очень удобны. Они позволяют измерять величину деформации деталей и амплитуду их вибрации, исследовать поверхности предметов сложной формы, следить за точностью изготовления как очень больших изделий (например, зеркал диаметром в несколько метров для телескопов), так и миниатюрных линз (как в микроскопе). Объект может плохо отражать свет, иметь неровную поверхность, быть совершенно прозрачным – на качество голограммы это не влияет. Благодаря мощным лазерным импульсам голограммы записывают за тысячные доли секунды. А потому сейчас можно изучать взрывы, электрические разряды и потоки газов, движущиеся со сверхзвуковой скоростью».
С помощью голограммы можно видеть сквозь матовое стекло или другую рассеивающую свет преграду. С рассеивателя снимают голограмму и совмещают одно из восстановленных с нее изображений с самим рассеивателем. Световые волны, идущие навстречу друг другу от голограммы и от рассеивателя, складываются и взаимно уничтожаются. Преграда исчезает, а предмет, лежащий за ней, становится виден во всех подробностях.
У современных технологов появилась новая идея. Она основана на способности лазера по заданной программе «сделать» из заготовки деталь любой формы и размера. Достаточно внутрь технологического лазера вставить голограмму эталонной детали, чтобы избавиться от необходимости писать программу и настраивать лазерную установку. Голограмма сама «подберет» такую конфигурацию луча и распределение его интенсивности, что «вырезанная» деталь будет точной копией эталона.