ФАНТАСТИКА

ДЕТЕКТИВЫ И БОЕВИКИ

ПРОЗА

ЛЮБОВНЫЕ РОМАНЫ

ПРИКЛЮЧЕНИЯ

ДЕТСКИЕ КНИГИ

ПОЭЗИЯ, ДРАМАТУРГИЯ

НАУКА, ОБРАЗОВАНИЕ

ДОКУМЕНТАЛЬНОЕ

СПРАВОЧНИКИ

ЮМОР

ДОМ, СЕМЬЯ

РЕЛИГИЯ

ДЕЛОВАЯ ЛИТЕРАТУРА

Последние отзывы

Невеста по завещанию

Очень понравилось, адекватные герои читается легко приятный юмор и диалоги героев без приторности >>>>>

Все по-честному

Отличная книга! Стиль написания лёгкий, необычный, юморной. История понравилась, но, соглашусь, что героиня слишком... >>>>>

Остров ведьм

Не супер, на один раз, 4 >>>>>

Побудь со мной

Так себе. Было увлекательно читать пока герой восстанавливался, потом, когда подключились чувства, самокопание,... >>>>>

Последний разбойник

Не самый лучший роман >>>>>




  8  

Интересно, что выводы из исследований сделал не Бойль, а Таунли. Бойль указывает, что Ричард Таунли, читая первое издание его сочинения «Новые физико-механические эксперименты касательно упругости воздуха» высказал гипотезу, что «давления и протяжения обратно пропорциональны друг другу».

Я.Г. Дорфман пишет: «Пятнадцать лет спустя после опубликования этих исследований Бойлем, т. е. в 1679 году, во Франции появилась „Речь о природе воздуха“ аббата Эдма Мариотта, в которой наряду с другими вопросами описывались аналогичные экспериментам Бойля опыты по изучению зависимости между давлением воздуха и занимаемым объемом. Мариотт ни словом не упоминает о своем предшественнике, словно ему совершенно неизвестны работы Бойля по пневматике. Между тем работы Бойля были широко известны: они публиковались на латинском и английском языке. Впрочем, Мариотт не впервые забыл упомянуть своего предшественника, ведь точно так же в 1673 году в труде о соударениях он ни словом не сказал о работе Гюйгенса, позаимствовав у последнего не только методику эксперимента, но и основы теории.

Работа Мариотта значительно уступает работе Бойля в отношении тщательности эксперимента. Бойль, как мы видели, измеряет высоты ртутного столба с точностью до шестнадцатых долей дюйма, сопоставляет реально наблюдаемые значения с вычислениями и указывает на неизбежную погрешность в измерениях. Мариотт измеряет высоты ртутного столба в целых дюймах и ограничивается сообщением, что опытные данные строго согласуются с расчетными. Осторожный и критически настроенный, Бойль называет открытый им закон только „гипотезой“, требующей экспериментального подтверждения. Мариотт провозглашает его законом или правилом природы. Так что по справедливости „закон Бойля—Мариотта“ должен именоваться „законом Бойля—Таунли“ или „Бойля—Таунли—Гука“. К сожалению, иногда в курсах физики ошибочно утверждается, будто Мариотт „уточнил“ исследования Бойля, что совершенно не соответствует действительности».

Тем не менее именно Мариотт (1620–1684) предсказал различные применения закона. Из них наиболее важным был расчет высоты места по данным барометра. Расчет, производившийся путем оперирования с бесконечно малыми величинами, привел к неудаче вследствие слабой математической подготовки ученого.

Позднее в 1686 году к проблеме определения высоты по атмосферному давлению обратился английский астроном Эдмонд Галлей (1656–1742). Он известен большинству читателей по открытой им комете, носящей его имя. Так вот, Галлей нашел формулу, по существу правильную, если не учитывать изменения температуры. Суть формулы Галлея сводилась к утверждению, что по мере возрастания высоты в арифметической прогрессии атмосферное давление уменьшается в геометрической прогрессии.

ЗАКОН ВСЕМИРНОГО ТЯГОТЕНИЯ

Мысль, что тела падают на землю вследствие притяжения их земным шаром, была далеко не нова: это знали еще древние, например Платон. Но как измерить силу этого притяжения? Везде ли на земном шаре оно одинаково и как далеко оно простирается? Вот вопросы, которые до Ньютона — автора закона всемирного тяготения, смущали ученых и философов.

Открыв свой третий закон, Кеплер пришел в такое восторженное состояние, что ему показалось, будто он бредит. В 1619 году Кеплер издал знаменитую «Гармонию мироздания», в которой был на расстоянии одного taara от открытия Ньютона и все-таки не сделал его. Мало того, что Кеплер приписывал движения планет некоторому взаимному притяжению, он даже готов был принять закон «квадратной пропорции» (то есть действия, обратно пропорционального квадратам расстояний). Увы, вскоре он отказался от него и вместо этого предположил, что притяжение обратно пропорционально не квадратам расстояний, а самим расстояниям. Кеплеру не удалось установить механических начал им же открытых законов планетного движения.

Непосредственными предшественниками Ньютона в этой области были его соотечественники Джильберт и в особенности Гук. В 1660 году Джильберт издал книгу «О магните», в которой сравнивал действие Земли на Луну с действием магнита на железо. В другом сочинении Джильберта, напечатанном уже после его смерти, сказано, что Земля и Луна влияют друг на друга как два магнита, и притом пропорционально своим массам. Но ближе всего к истине подошел Роберт Гук, современник и соперник Ньютона. 21 марта 1666 года, то есть незадолго до того времени, когда Ньютон впервые глубоко вник в тайны небесной механики, Гук прочел на заседании Лондонского королевского общества отчет о своих опытах над изменением силы тяжести в зависимости от расстояния падающего тела относительно центра Земли. Сознавая неудовлетворительность своих первых опытов, Гук придумал измерять силу тяжести посредством качания маятника — мысль в высшей степени остроумная и плодотворная. Два месяца спустя Гук сообщил в том же обществе, что сила, удерживающая планеты в их орбитах, должна быть подобна той, которая производит круговое движение маятника. Значительно позднее, когда Ньютон уже готовил к печати свой великий труд, Гук независимо от Ньютона пришел к мысли, что «сила, управляющая движением планет», должна изменяться в «некоторой зависимости от расстояний», и заявил, что «построит целую систему мироздания», основанную на этом начале. Но здесь-то и обнаружилось различие между талантом и гением. Счастливые мысли Гука так и остались в зачаточном состоянии. Ему не хватило сил справиться со своими гипотезами, и приоритет открытия принадлежит Ньютону.

  8